Sunpreme, a US-based solar photovoltaic company that designs and manufactures its own cells, panels and systems, announced that its advanced double glass PV panels have successfully passed severe test conditions of extreme low temperatures and mechanical robustness.

The tests, conducted by the University of Wisconsin at their Physical Sciences Laboratory, are a stepping-stone to possible deployment of Sunpreme panels in Antarctica. The panels are under consideration to be used at the IceCube Neutrino Observatory located at the South Pole to help reduce the logistical cost of running the detector.

The cost of shipping fuel for generators to the South Pole is becoming exorbitant, with power costs now reaching $1.61/kWh.
Sunpreme’s solar PV panels could help reduce the cost of Antarctic research while providing a reliable source of energy to the important experiments going on.

In order to simulate the extreme low temperatures, testing was done at -60 C for extended periods of time to ensure that the test conditions did not show any evidence of failure to connectors, cabling, semiconductors, adhesives, or mounting hardware.

"Extreme environment requires a reliable solar panel, and Sunpreme panels, with their innovative and rugged double glass construction demonstrated excellent performance. After multiple tests of dropping the panels to temperatures of -60 degrees C for extended periods of time, the panels, junction boxes and cabling were able to withstand applied mechanical impacts without cracking or failure," said Matt Newcomb, from the Wisconsin IceCube Particle Astrophysics Center at the University of Wisconsin-Madison.

"This is a gratifying milestone we have achieved in close partnership with the University of Wisconsin at their Physical Sciences Laboratory as it validates our modules design strategy for extreme ruggedness combined with outstanding aesthetics," said Dr. Ashok K Sinha, CEO and Chairman of Sunpreme.

"Our new n-type Si based bi-facial solar cells use Sunpreme’s unique high performance Hybrid Cell Technology (HCT); these cells packaged in frameless double glass panels have already demonstrated world-class cost performance in environments ranging from hot to cold, and space constrained roof tops to hurricane prone islands," added Dr. Sinha.

The Wisconsin IceCube Particle Astrophysics Center, or WIPAC, is a scientific center within the Graduate School of the University of Wisconsin-Madison with faculty based in the Departments of Physics and Astronomy. The main goal of the center is maintaining and operating the IceCube Neutrino Observatory at the South Pole in Antarctica.