MEITNER teams will identify and develop innovative technologies that enable designs for lower cost, safer, advanced nuclear reactors.

“Nuclear energy is an essential component of the U.S. energy mix, and by teaming up with the private sector to reduce costs and improve safety, we are keeping America ahead of the curve in advanced reactor design and technology,” said U.S. Secretary of Energy Rick Perry. “These next-generation ARPA‑E technologies help us maintain our competitive, technological edge globally, while improving the resilience of the grid and helping provide reliable, baseload electricity to each and every American.”

Nuclear power generates nearly 20 percent of U.S. electricity, offering a reliable source of power that complements the country’s diverse portfolio of energy generation sources. Existing nuclear power plants, however, face comparatively high operational and maintenance costs. MEITNER projects will leverage design, new manufacturing processes, and technologies to lower costs and increase the competitiveness of nuclear power. Funded projects will support advanced reactor designs that achieve lower construction cost and autonomous operations while also improving safety.

ARPA-E developed this funding opportunity in close coordination with DOE’s Office of Nuclear Energy, and MEITNER teams will have access to Department modeling and simulation resources as they develop their concepts. Project teams will coordinate regularly with a DOE-supported resource team of experts from across the Department and DOE’s National Laboratories.

A selection of MEITNER projects are below. The full list of selected projects can be viewed HERE.

HolosGen, LLC – Manassas Park, VA
Transportable Modular Reactor by Balance of Plant Elimination – $2,278,200
The HolosGen team seeks to develop a transportable, gas-cooled nuclear reactor with load following ability. By using a closed Brayton cycle engine with components connected directly to the reactor core, the team expects to simplify plant construction, leading to lower costs and shorter commissioning times. The reactor can be packaged in a standard shipping container, making it highly portable and reducing cost. The team aims to demonstrate the viability of this concept using multi-physics modeling and simulation tools validated by testing a non-nuclear prototype.

Yellowstone Energy – Knoxville, TN
Reactivity Control Device for Advanced Reactors – $2,599,185
The Yellowstone Energy team seeks to develop a new reactor control technology to enhance passive safety and reduce costs for its molten salt reactor and other designs. Materials embedded in the control rods will vaporize at elevated temperatures, producing a vapor that captures neutrons and slows reaction rates, even in the absence of external controls. The team will use simulation tools to determine the effectiveness of the control device and conduct a techno-economic analysis at the plant level to determine cost effectiveness.

Source: Compnay Press release